Требования адсорбентам

Требования, предъявляемые к адсорбентам

Требования, предъявляемые к адсорбентам — раздел Химия, Предмет коллоидной химии В Качестве Адсорбентов Наиболее Часто Применяют Углеродные Сорбенты (Древесны.

В качестве адсорбентов наиболее часто применяют углеродные сорбенты (древесный или костный уголь, графитированная термическая сажа ГТС), бентонитовые глины, силикагель, цеолиты и др.

Углеродные сорбенты получают из всевозможного сырья, которое при определенных условиях может давать твердый углеродный остаток – ископаемых углей, торфа, древесины, ореховой скорлупы, фруктовых косточек и животных костей. Лучшими считаются угли, полученные из скорлупы кокосовых орехов и абрикосовых косточек.

Для повышения адсорбционной способности углеродных сорбентов их дополнительно активируют, выдерживая при повышенной температуре в присутствии паров воды и углекислого газа. В процессе активации выгорает смола, заполняющая поры углей, удельная поверхность адсорбента, а следовательно, и его адсорбционная способность, возрастают.

Удельная поверхность активированного угля, включая поверхность всех его пор, может достигать 1000 м 2 /г.

Углеродные сорбенты применяют для очистки воды, пищевых масс; очистки и разделения газов; в медицине.

Силикагель получают высушиванием студня поликремниевой кислоты; по химическому составу – это SiO2. Выпускается в виде пористых крупинок, удельная поверхность составляет

Бентониты – предварительно активированные кислотой глины, применяют для очистки сиропов, соков, растительных масел.

Пористые стекла получают при удалении из стекол щелочных и щелочноземельных металлов.

Цеолиты (в переводе с греческого «кипящий камень» из-за способности вспучиваться при нагревании) – природные и синтетические алюмосиликатные материалы. Кристаллическая структура их образована тетраэдрами [SiO4] 4– и [AlO4] 5– , объединенными общими вершинами в трехмерный каркас, пронизанный полостями и каналами, в которых находятся молекулы воды и катионы металлов I, II групп.

Цеолиты проявляют адсорбционные свойства после удаления воды из их полостей (при нагревании). Цеолиты различных разновидностей имеют строго определенный размер входов в полости и каналы. Поэтому их называют еще «молекулярными ситами» за способность сорбировать лишь определенные компоненты.

Используются для выделения и очистки углеводородов нефти; очистки, осушки и разделения газов (в т.ч. воздуха); осушки фреонов; извлечения радиоактивных элементов.

Твердые адсорбенты бывают пористые и непористые.

Пористость адсорбента определяется отношением суммарного объема пор Vп к общему объему адсорбента Vадс

В зависимости от размера пор различают макропористые, мезопористые и микропористые адсорбенты.

Т а б л и ц а 3

Пористость адсорбента имеет большое значение для адсорбции: чем она выше, тем больше удельная поверхность и выше адсорбционная способность. Однако это справедливо только в том случае, если молекулы адсорбата невелики и легко могут проникать в поры, т.е. соизмеримы с размером пор.

Различают полярные (гидрофильные) и неполярные (гидрофобные) адсорбенты.

Полярные (хорошо смачиваются водой) – силикагель, цеолит, глины, пористое стекло; неполярные (водой не смачиваются) – активированный уголь, графит, тальк, парафин.

Требования, предъявляемые к адсорбентам:

1) большая удельная поверхность (достигается за счет измельчения, активирования поверхности, нанесения тонкого слоя адсорбента на пористую поверхность (керамику, кирпич));

2) механическая прочность, термическая и химическая устойчивость;

3) низкая себестоимость;

4) возможность регенерации.

Правила подбора адсорбентов

При выборе адсорбента необходимо определить тип адсорбируемого вещества (полярное, неполярное, ПАВ). Полярные адсорбенты не следует применять при адсорбции из водных растворов, т.к. они могут адсорбировать растворитель – воду. Их целесообразно использовать при адсорбции из неводных растворов.

Неполярные адсорбенты хорошо адсорбируют из водных сред.

Дифильные молекулы могут адсорбироваться на любом адсорбенте. При этом они ориентируются своими полярными группами в полярную среду, неполярными – в неполярную (рис. 15).

Образовавшийся адсорбционный слой может изменить характер поверхности. Например, адсорбция дифильных молекул из водного раствора приводит к гидрофилизации поверхности угля, вследствие чего уголь приобретает способность смачиваться водой.

Эффект Ребиндера: при адсорбции ПАВ разность полярностей между адсорбентом и растворителем уменьшается.

Степень разделения растворенного вещества и растворителя тем выше, чем больше разница в полярности.

При выборе адсорбента необходимо учитывать размеры молекул адсорбтива: диаметр пор должен превышать диаметр молекул.

Эта тема принадлежит разделу:

Предмет коллоидной химии

ГОувпо Воронежская Государственная. Технологическая Академия. Кафедра физической и аналитической химии.

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Требования, предъявляемые к адсорбентам

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Сплошной среды и дисперсной фазы
Все дисперсные системы образуют две большие группы – лиофильные и лиофобные. Лио – жидкость, филио – любить, фобио – отторгать. 1) лиофильные (гидрофильные) системы характе

Поверхностно-активные вещества
Вещества, которые при растворении снижают поверхностное натяжение растворителя, называются поверхностно-активными веществами (ПАВ). Вещества, не изменяющие поверхностное натяжение растворите

Фундаментальное адсорбционное уравнение Гиббса
Уравнение Гиббса связывает величину адсорбции со способностью растворенного вещества изменять поверхностное натяжение. Выводится из объединенного уравнения I и II законов термодинамики для внутренн

Уравнение мономолекулярной адсорбции Ленгмюра
Экспериментально были получены изотермы адсорбции различных ПАВ. Все они имели одинаковую форму – имелся горизонтальный участок (рис. 11). Для веществ одного гомологического ряда все изотермы в пре

Особенности адсорбции на твердом адсорбенте
Адсорбция происходит на межфазной поверхности газ-твердое тело, жидкость-твердое тело. В отличие от жидкой твердая поверхность энер

Основные теории адсорбции на твердых адсорбентах
Все теории разработаны для адсорбции газов и паров твердыми телами, поскольку система твердое тело-газ состоит всего из двух компонентов и поэтому удобна для теоретического рассмотрения явления адс

Уравнение Фрейндлиха
На практике часто для аналитического описания зависимости адсорбции на твердом адсорбенте от концентрации адсорбтива применяется эмпирическое уравнение Фрейндлиха:

Капиллярная конденсация
При давлении, равном давлению насыщенного пара рs, начинается капиллярная конденсация. Процесс сорбции пар

Ионная адсорбция из растворов
Ионная адсорбция — адсорбция из растворов сильных электролитов. В этом случае растворенное вещество адсорбируется в виде ионов. Ионная адсорбция является более сложным процессом по сравнен

Ионообменная адсорбция
Ионообменная адсорбция — это процесс, при котором твердый адсорбент обменивает свои ионы на ионы того же знака из жидкого раствора. Твердый адсорбент, практически нерастворим

Адгезия и смачивание
Адгезия (прилипание, сцепление, слипание) – поверхностное явление, заключающееся во взаимодействии частиц поверхностных слоев двух конденсированных фаз. Возможны три случая адгезии:

Двойного электрического слоя
Существует несколько теорий строения ДЭС, наиболее значительные из них – теория Гельмгольца-Перрена (1879 г.); – теория Гуи-Чепмена (1910-1913 г.г.); – терия Штерна (1924

Строение мицеллы гидрофобного золя
Дисперсная фаза и прилегающий двойной электрический слой составляют мицеллу гидрофобного золя(micella – уменьшительное от лат. mica – крошка, крупица). Основу мицеллы составляет

Влияние электролитов
По характеру воздействия на потенциал ядра (j0-потенциал) электролиты подразделяют на индифферентные и неиндифферентные. Индифферентные (безразличные) электролиты не имею

Влияние индифферентных электролитов.
При добавлении к золю индифферентных электролитов потенциал ядра j0 не изменяется, следовательно, общее число противоионов, необходимых для его компенсации, останется прежним, но изменит

Влияние неиндифферентных электролитов.
При введении в золь неиндифферентных электролитов возможны два случая. 1 случай – в золь вводится электролит, содержащий потенциалопределяющий ион (неиндифферентный ион). Второй ион в элек

Электрофорез
Электрофорез – направленное движение частиц дисперсной фазы относительно дисперсионной среды под действием внешнего электрического поля. При наложении внешнего электрического поля п

Применение электрофореза.
1. Метод электрофореза широко используется для определения z-потенциала. Для этого измеряют электрофоретическую скорость при известной напряженности электрического поля.

Потенциал седиментации
Потенциал седиментации – возникновение разности потенциалов при движении (седиментации) частиц в неподвижной жидкости. Рассмотрим коллоидную систему, находящуюся в емкости (например

Электроосмос
Электроосмос – движение дисперсионной среды через неподвижную капиллярно-пористую перегородку под действием внешнего электрического п

Потенциал течения
Потенциал течения (протекания) – это явление возникновения разности потенциалов при перемещении дисперсионной среды через капиллярно-

Лиофобных золей
Дисперсные системы характеризуются значительным избытком свободной нескомпенсированной поверхностной энергии Gпов = sS, связанным как с большой удельной п

Седиментационная устойчивость
Седиментационная устойчивость – это способность системы противодействовать оседанию частиц (силе тяжести). Противодействие силе тяжести зависит от размеров частиц. Для крупных (сред

Теория устойчивости гидрофобных золей ДЛФО
Современная теория устойчивости развита российскими учеными Дерягиным и Ландау и голландскими учеными Фервеем и Овербеком и известна в литературе как теория ДЛФО. В основе теории ДЛФО лежи

Коллоидных систем
1. Адсорбционно-ионный фактор. Обусловлен наличием на поверхности частиц двойного электрического слоя и z-потенциала. Чем больше силы отталкивания, тем выше потенциальный барьер, и тем бол

Коагуляция гидрофобных дисперсных систем
Коагуляция – процесс слипания частиц дисперсной фазы с образованием крупных агрегатов. Коагуляция является следствием нарушения агрегативной устойчивости лиофобных золей. В результа

Концентрационная коагуляция
Концентрационная коагуляция происходит под действием индифферентного электролита, при этом потеря устойчивости вызывается сжатием диффузной части ДЭС при неизменном потенциале ядра (рис. 41)

Нейтрализационная коагуляция
Нейтрализационная коагуляция происходит при добавлении к золю неидифферентного электролита. При этом потенциалобразующие ионы связываются в малорастворимое соединение, что приводит к уменьше

Явление неправильных рядов
Наблюдается при коагуляции золей электролитами, вызывающих нейтрализацию заряда ядра и перезарядку золя. Данное явление заключается в том, что при добавлении таких электролитов золь сначала остаетс

Кинетика коагуляции
Для начала коагуляции необходимо, чтобы частицы преодолели энергетический барьер ΔUк и попали в первый минимум. Для этого необходимо уменьшить силы отталкивания, т.е. снизить

Теория быстрой коагуляции Смолуховского
Основные положения: 1. Частицы монодисперсны и имеют сферическую форму. 2. Частицы дисперсной фазы имеют коллоидные размеры и перемещаются за счет броуновского движения.

Константа скорости быстрой коагуляции
1. Теоретическое определение константы скорости быстрой коагуляции. Скорость быстрой коагуляции определяется только диффузионной стадией.

Рассеяние света
Рассеяние света является характерным свойством коллоидных растворов, отличающим их от истинных. При пропускании светового луча через прозрачную коллоидную систему, то при наблюдении освеща

Теория светорассеяния Рэлея
Перед рассмотрением основных положений теории Рэлея необходимо вспомнить, что собой представляет световая волна и за счет чего происходит рассеяние света. Световая волна представляет собой

Поглощение света и окраска золей
Многие коллоидные растворы имеют окраску, что указывает на поглощение ими света. Поглощение света – ослабление светового потока при прохождении его сквозь среду. Для истинных растворов пог

Оптические методы исследования коллоидных растворов
На явлении рассеяния света коллоидными частицами основан ряд важнейших методов их исследования. Ультрамикроскопия. При использовании видимого света обычный микроскоп позво

Броуновское движение
Броуновским движением называют хаотическое равновероятное для всех направлений движение мелких частиц, взвешенных в жидкости или газе за счет воздействия молекул дисперсионной среды.

Читайте так же:  Нотариус салихова марина борисовна

Диффузия
Диффузия – самопроизвольное распространение вещества из области с большей концентрацией в область с меньшей концентрацией. В случае коллоидных растворов идет диффузия частиц дисперс

Особенности строения полимеров
В макромолекулах ВМС имеется два типа связей: – химические связи, соединяющие атомы в полимерной цепи, очень прочные; – межмолекулярные связи, возникающие за счет сил Ван-дер-Ваал

Набухание ВМС
При контакте полимера с растворителями происходит его набухание. Набухание – это самопроизвольный процесс поглощения низкомолекулярного растворителя высокомолекулярным веществом, со

Термодинамика набухания
Процесс набухания идёт самопроизвольно, т.е при р, Т = const ΔG < 0, ΔG = ΔH – TΔS. (7.1) На перво

Факторы, влияющие на набухание
1. Природа ВМС и растворителя (неполярные полимеры хорошо набухают и растворяются в неполярных растворителях, полярные – в полярных). 2. Время жизни ВМС: чем старше полимер, тем хуже он на

Свойства растворов ВМС
Растворение ВМС является самопроизвольным процессом и приводит к уменьшению свободной энергии системы. Поэтому растворы ВМС являются термодинамически устойчивыми и не требуют присутствия стабилизат

Коллоидные ПАВ. Мицеллообразование в растворах ПАВ
Коллоидными ПАВ называют поверхностно-активные вещества, способные в растворах образовывать мицеллы, т.е. ассоциаты, состоящие из большого количества молекул ПАВ (от 20 до 100). Способност

Применение коллоидных ПАВ
1. Пищевая промышленность. Коллоидные ПАВ применяют в хлебопекарной, макаронной и кондитерской промышленности. Это позволяет улучшить качество продуктов, увеличить срок хранения за счет уд

Устойчивость пен
Пены, как и другие дисперсные системы, термодинамически неустойчивы. Их образование сопровождается повышением свободной энергии. Избыточная энергия вызывает самопроизвольные процессы, которые ведут

Методы разрушения пен
Некоторые технологические процессы, особенно в химической, текстильной и пищевой промышленности, сопровождаются нежелательным пенообразованием. В ряде случаев образование пены может вызвать серьезн

Практическое применение пен
Пенообразование используют во многих отраслях народного хозяйства – в производстве строительных и теплоизоляционных материалов (пенобетон, пеностекло), пластичных масс (пенопласты), при обогащении

Золи и суспензии
Золи и суспензии, а также их производные – гели и пасты – являются разновидностью одного и того же типа дисперсных систем – Т/Ж, которые различаются размерами и концентрацией дисперсной фазы. Наряд

Основные свойства и устойчивость порошков
К основным технологическим свойствам порошков относят: 1) сыпучесть; 2) слеживаемость в процессе хранения, комкование порошков (аутогезия); 3) уплотняемость – изменение о

Практическое применение порошков
Порошкообразные материалы находят широкое применение в промышленности. В любой отрасли промышленности в той или иной степени используются многочисленные порошкообразные материалы: строительные мате

Типы структур в дисперсных системах
Формирование структур в дисперсных системах с жидкой дисперсионной средой связано с нарушением агрегативной устойчивости. При этом возможно образование структур двух типов. Для структур первого тип

Студни и студнеобразование
Структурированию растворов ВМС способствует анизометричность макромолекул и наличие в полимерных цепочках чередующихся полярных и неполярных фрагментов. В растворах полимеров возможно образование к

Требования адсорбентам

Адсорбенты — это препараты, которые сорбируют из кишечника токсины, газы, микроорганизмы, лекарственные препараты, аллергены, радиоактивные изотопы, соли тяжелых металлов и выводят их из организма.

Кроме того, они способствуют нормализации микрофлоры кишечника, снижают содержание в крови билирубина и мочевины, улучшают липидный обмен.

Основные требования, предъявляемые к адсорбентам:

  • Высокая сорбционная емкость.
  • Отсутствие токсических свойств.
  • Способность не раздражать слизистые оболочки кишечника.
  • Быстрое выведение из пищеварительного тракта.

В настоящее время выпускаются следующие адсорбенты (в гранулах, порошках, таблетках, пастах, гелях):

  • На основе активированного угля (Карболен, Карболонг, Карбактин, Уголь активированный «КМ», Ультра адсорб ).
  • На основе поливинилпирролидона ( Энтеродез , Энтеросорб).
  • На основе кремнийорганических веществ ( Энтеросгель , Полисорб МП ).
  • На основе алюминия и магния ( Алмагель , Гастал , Фосфалюгель ).
  • На основе сукральфата ( Вентер ).
  • На основе лигнина и целлюлозы (Лигносорб, Полифепан , Фильрум-СТИ, Энтегнин ).
  • На основе медицинской глины ( Смекта и Неосмектин ).
  • Производные альгиновой кислоты (Альгисорб);
  • анионообменные смолы – Колестирамин и Колестипол.

Активированный уголь за счет своей пористой структуры обладает высокой сорбционной емкостью, что позволяет ему связывать газы, токсины, соли тяжелых металлов, салицилаты, барбитураты; в меньшей степени — кислоты и щелочи (метанол, этиленгликоль). Препараты на основе активированного угля применяются при метеоризме, инфекционных заболеваниях пищеварительного тракта, в качестве антидотов при острых отравлениях различными химическими веществами (фосфорорганическими и хлорорганическими соединениями) и лекарственными средствами (сердечными гликозидами, барбитуратами).

Адсорбенты, созданные на основе лигнина и целлюлозы (Лигносорб, Полифепан, Фильрум-СТИ, Энтегнин), продуктов переработки углеводных компонентов древесины, могут сорбировать различные виды бактерий и выделяемые ими токсины, соли тяжелых металлов, алкоголь, аллергены, билирубин, мочевину, холестерин.

Гидрогель метилкремниевой кислоты (Энтеросгель) способен связывать ротавирусы. Этот препарат не оказывает повреждающего действия на слизистую ЖКТ и быстро выводится из организма. Энтеросгель можно комбинировать с антибиотиками, ферментами и другими лекарственными средствами.

Препарат Альгисорб (производное альгиновой кислоты, содержащейся в морских водорослях) сорбирует преимущественно радиоактивные изотопы (стронция, бария, радия, рутения, циркония, ниобия) и соли тяжелых металлов (меди, ртути, свинца, железа).

Сорбционными свойствами обладают препараты алюминия и магния (Алмагель, Гастал, Фосфалюгель), сукральфата (Вентер), лекарственные средства на основе медицинской глины (Смекта и Неосмектин). Они адсорбируют и выводят из организма вирусы, бактерии, токсины, газы и желчные кислоты.

Колестирамин и Колестипол образуют невсасывающиеся комплексы с желчными кислотами и способствуют их выведению из организма. В результате в печени усиливаются процессы синтеза желчных кислот из холестерина и его уровень в плазме крови снижается, что приводит к улучшению липидного обмена.

Кроме того, адсорбент Полисорб МП может применяться наружно, в составе комплексной терапии гнойных ран, трофических язв и ожогов.

Альгисорб назначается при интоксикации радиоизотопами (стронция, бария, радия, рутения, циркония, ниобия) и солями тяжелых металлов (меди, ртути, свинца, железа).

С профилактической целью (для предупреждения развития хронических интоксикаций) Полисорб МП, Фильрум-СТИ, Энтеросгель рекомендуются работникам вредных производств, а также жителям экологически неблагоприятных районов.

Применение адсорбентов, особенно длительное, может привести к развитию запоров, нарушению всасывания витаминов, микроэлементов, белков и жиров.

Адсорбенты на основе активированного угля окрашивают стул в черный цвет.

При назначении Колестирамина и Колестипола могут наблюдаться диспептические явления (анорексия, изжога, тошнота, рвота, икота, метеоризм, боли в животе), панкреатит, стеаторея, дерматит, крапивница. При продолжительном лечении этими препаратами возможны гипохлоремический ацидоз, нарушение всасывания жирорастворимых витаминов и фолиевой кислоты, уменьшение протромбинового времени, снижение свертываемости крови, желудочно-кишечные кровотечения.

Адсорбенты не назначаются при гиперчувствительности, динамической кишечной непроходимости.

Активированный уголь противопоказан при эрозивно-язвенных поражениях ЖКТ, желудочно-кишечных кровотечениях.

Колестирамин и Колестипол не применяются при обструкции желчевыводящих путей, беременности и кормлении грудью.

Адсорбенты снижают всасывание и эффективность многих препаратов, применяемых внутрь. Поэтому их следует назначать за 1-2 часа до или через 1-2 часа после приема других лекарственных средств.

Энтеросгель можно комбинировать с другими медикаментозными препаратами (например, антибиотиками, ферментами).

Адсорбенты

Адсорбенты – это вещества, обладающие способностью адсорбции (от лат. Ad — на, и sorbeo — поглощаю), т. е. поглощения, всасывания какого-либо другого вещества из раствора или из газа только своей поверхностью, в отличие от абсорбентов, которые поглощают, всасывают всей своей массой. Причина адсорбции – нескомпенсированность межмолекулярных сил вблизи этой поверхности, т. е. наличие адсорбционного силового поля. Тело, создающее такое поле, называют адсорбентом, вещество, молекулы которого могут адсорбироваться — адсорбтивом, а уже адсорбированное вещество – адсорбатом. Природа адсорбционных сил может быть различной — если это Ван-дер-ваальсовые силы, то адсорбция называется физической, если валентные (т. е. адсорбция сопровождается образованием поверхностных химических соединений) — химической или хемосорбцией. Хемосорбция имеет отличительные черты: необратимость, высокие тепловые эффекты и активированный характер. Между физической и химической адсорбцией существует множество вариантов промежуточных случаев, например, адсорбция, обусловленная образованием водородных связей.

Адсорбенты — это искусственные или природные тела с развитой поверхностью (создаваемой капиллярами или кристаллической решеткой), которая хорошо поглощает (адсорбирует) вещества из газов и растворов. Адсорбционные свойства адсорбентов зависят от химического состава и физического состояния поверхности, от характера пористости и удельной поверхности (поверхности, приходящейся на 1 г вещества). Непористые адсорбенты (молотые кристаллы, мелкокристаллические осадки, частицы дымов, сажи, аэросил) имеют удельные поверхности приблизительно от 1 м 2 /г до 500 м 2 /г. Удельная поверхность пористых адсорбентов (силикагелей, активированного оксида (окиси) алюминия (алюмогелей), алюмосиликатных катализаторов, активированных углей) достигает 1000 м 2 /г. Пористые адсорбенты получают, создавая сети пор в грубодисперсных твёрдых телах химическим воздействием.

Адсорбенты применяются как носители в катализе, как наполнители для полимеров, для хроматографического разделения смесей в хроматографии, в противогазах, в медицине, в нефтепереработке (риформинг, гидроочистка, гидрокрекинг), нефтехимии для очистки нефтепродуктов (нефти, бензина и т. д.) и газов, адсорбционной очистки масел, прежде всего трансформаторных, от кислот — продуктов окисления масел, как статические осушители при консервации приборов и оборудования, а также в высоковакуумной технике для сорбционных насосов. В большинстве отраслей промышленности при производстве различной продукции используются сжатый воздух, различные технические газы (углекислый газ, водород и т. д.) и жидкости. Чтобы избежать нежелательного образования влаги, льда и возможных последующих проблем, связанных с коррозией, загрязнением либо обледенением оборудования, намоканием фильтровальных материалов, из сжатого воздуха, различных технических газов и жидкостей необходимо удалить влагу, т. е. осушить. Необходимость осушки и очистки присутствует в разнообразных процессах, в числе которых, например, кондиционирование воздуха или транспортировка природного газа по трубопроводам. Осушка природного газа обеспечивает непрерывную эксплуатацию оборудования и газопроводов, предотвращая образование ледяных и гидратных пробок. Адсорбенты-осушители можно разделить на активированный оксид (окись) алюминия — очищенный боксит; гели — вещества, состоящие из оксида кремния (силикагели) или алюмогеля; молекулярные сита — цеолиты; активированный уголь — пористые вещества, получаемые из различных углеродсодержащих материалов органического происхождения. Использование адсорбента на основе оксида алюминия активного — один из основных способов осушки воздуха, технических газов и жидкостей, он особенно хорошо подходит для осушки сжатого воздуха или газов и жидкостей с высокой относительной влажностью. Низкая стоимость, химическая и физическая стабильность, возможность регенерации и высокая адсорбционная емкость поглощения воды — это факторы, способствовавшие широкому применению активного оксида алюминия.

Адсорбционный метод осушки используют, как правило, для обеспечения глубокой осушки газа — до точки росы минус 100 °С. Процесс основан на способности адсорбентов поглощать влагу из газа при сравнительно низких температурах и выделять ее при повышенных температурах. Процесс осушки осуществляется в адсорбере – основном аппарате установки адсорбции. Конструктивно адсорберы выполняются в виде вертикальных, горизонтальных либо кольцевых емкостей, заполненных адсорбентом, через который фильтруется поток очищаемого газа. Выбор конструкции определяется скоростью газовой смеси, размером частиц адсорбента, требуемой степенью очистки и рядом других факторов. Вертикальные адсорбенты, как правило, находят применение при небольших объемах очищаемого газа; горизонтальные и кольцевые — при высокой производительности. Осушка воздуха, углекислого газа, водорода, природного газа в промышленности предъявляет самые жесткие требования к адсорбентам, особенно в случае осушки воздуха, когда нужны высокие скорость газа и давление, а также требуется частая регенерация.

Читайте так же:  Что значит слова договор

Химический состав адсорбента на основе окиси алюминия активной (алюмогеля) обычно жестко не регламентируется. Такие примеси, как оксид кремния, не изменяют характеристик продукта, даже если их содержание составляет несколько процентов. Наличие железа ухудшает товарный вид адсорбента, но его содержание обычно невелико, менее 0,2 %. Существенное значение имеет содержание солей натрия — присутствие щелочи понижает термическую стабильность адсорбентов и кислотность их поверхности (последнее отражается на качестве адсорбента, применяемого при осушке воздуха и очистке его от непредельных углеводородов в производстве жидкого кислорода).

Сферическая грануляция активной оксиси алюминия имеет ряд существенных преимуществ по отношению к экструдатам цилиндрической формы: большая удельная поверхность пор, большая прочность на раздавливание, более плотная и компактная загрузка в адсорбер. Рекомендуемый размер гранул оксида алюминия непосредственно связан с линейной скоростью потока в адсорбере. Если адсорбент работает при высоком давлении и небольших линейных скоростях, изменение диаметра гранул не оказывает существенного влияния на потерю напора. В этом случае обычно применяются гранулы диаметром 2–5 мм. Для систем, работающих при невысоком давлении и значительных линейных скоростях, рекомендуются гранулы диаметром 4-8 мм.

Компания «Химические системы» предлагает на российском рынке ассортимент промышленных адсорбентов на основе активированного (активного) оксида алюминия высокого качества, отвечающих современным требованиям. Первый завод по производству оксида алюминия был построен в начале XX века и расположен во Франции. Его история тесно связана с историей развития алюминиевой промышленности, он был одним из первых в мире заводом, который в промышленном масштабе начал производить алюминий из боксита — руды, названной по имени деревни Бо (от франц. les Baux) в Провансе, где она была найдена. На этом заводе в 1976 году стали производить оксид алюминия с использованием уникальной «Flash» (Флэш) технологии «Pechiney» (Пешине). С тех пор он является одним из ведущих мировых производителей оксида алюминия, молекулярных сит (цеолитов) и различных катализаторов. Позднее появились другие заводы, расположенные в разных странах Европы.

Компания «Химические системы» предлагает ассортимент активного оксида алюминия AA (от англ. Activated Alumina – активированный оксид алюминия) для осушки и очистки:

  • Alumac A — шарики диаметром 1,5-3, 2–5 и 4–8 мм. Это базовый адсорбент с улучшенными характеристиками, рекомендован для любых применений при осушке и очистке газов и жидкостей.
  • Alumac D (от англ. drying — осушка) — шарики диаметром 2–5, 2,5–5 и 4–8 мм. Этот адсорбент был специально разработан для осушки воздуха и других газов. Гладкая поверхность шариков придает им улучшенные механические характеристики. Крайне высокие устойчивость к истиранию и прочность сочетаются с большой площадью поверхности и высокой адсорбционной емкостью, что придает марке D свойства, необходимые для безопасной работы в самых жестких условиях осушки. Адсорбент марки D имеет особую обработку для не пыления. Адсорбент этой марки обеспечивает улучшенные показатели и большую длину цикла осушки, что дает прямую экономию за счет снижения количества замен слоя адсорбента. Также снижаются расходы на транспорт, загрузку, утилизацию и административно-хозяйственные расходы.
  • Alumac 320 — экструдаты диаметром 1,1-1,3 мм в форме трилистника в сечении. Адсорбент для селективного удаления фторидов и мышьяка из воды. Небольшой размер гранул обеспечивает оптимальное распространение поглощенных примесей в порах адсорбента. Адсорбент данной марки можно применять для водоподготовки, очистки питьевой, хозяйственно-бытовых и промышленных сточных вод.
  • Alumac 400G — гранулированный адсорбент с размером частиц 0,3-0,6 мм и 0,6-1,5 мм. Данный сорбент специально разработан для регенерируемых систем очистки воды. Предназначен для очистки питьевой воды от мышьяка, фтора, меди, цинка, свинца, фосфатов, нитратов, селена, хрома, ртути, кадмия и кремния.
  • AxSorb – активированный оксид алюминия в шариков диаметром 2-5 и 4-8 мм., разработанный, ведущим производителем оксида алюминия и катализаторов, компанией Axsens. В ходе обширных исследований и совершенствования технологии производства компанией Axens установлены соотношения, необходимые для производства различных сортов оксида алюминия, обладающих нужным сочетанием требуемой адсорбционной емкости и таких желательных параметров, как прочность на раздавливание и устойчивость к истиранию.

Сравнительные параметры алюмогелей приведены в таблице. Адсорбционная емкость остается главным параметром активированной окиси алюминия, применяемым для оценки эффективности адсорбента. Адсорбционная емкость зависит от реакционной способности центров на поверхности и измеряется как объем влаги, адсорбированной на единицу площади поверхности. Для выражения статической адсорбционной емкости при относительной влажности 10 % и 60 % используются обозначения E0,1 и E0,6, соответственно.

Требования, предъявляемые к адсорбентам

Характеристика твердых адсорбентов.

В качестве адсорбентов наиболее часто применяют углеродные сорбенты (древесный или костный уголь, графитированная термическая сажа ГТС), бентонитовые глины, силикагель, цеолиты и др.

Углеродные сорбенты получают из всевозможного сырья, которое при определенных условиях может давать твердый углеродный остаток – ископаемых углей, торфа, древесины, ореховой скорлупы, фруктовых косточек и животных костей. Лучшими считаются угли, полученные из скорлупы кокосовых орехов и абрикосовых косточек.

Для повышения адсорбционной способности углеродных сорбентов их дополнительно активируют, выдерживая при повышенной температуре в присутствии паров воды и углекислого газа. В процессе активации выгорает смола, заполняющая поры углей, удельная поверхность адсорбента, а следовательно, и его адсорбционная способность, возрастают.

Удельная поверхность активированного угля, включая поверхность всех его пор, может достигать 1000 м 2 /г.

Углеродные сорбенты применяют для очистки воды, пищевых масс; очистки и разделения газов; в медицине.

Силикагель получают высушиванием студня поликремниевой кислоты; по химическому составу – это SiO2. Выпускается в виде пористых крупинок, удельная поверхность составляет

Бентониты – предварительно активированные кислотой глины, применяют для очистки сиропов, соков, растительных масел.

Пористые стекла получают при удалении из стекол щелочных и щелочноземельных металлов.

Цеолиты (в переводе с греческого «кипящий камень» из-за способности вспучиваться при нагревании) – природные и синтетические алюмосиликатные материалы. Кристаллическая структура их образована тетраэдрами [SiO4] 4– и [AlO4] 5– , объединенными общими вершинами в трехмерный каркас, пронизанный полостями и каналами, в которых находятся молекулы воды и катионы металлов I, II групп.

Цеолиты проявляют адсорбционные свойства после удаления воды из их полостей (при нагревании). Цеолиты различных разновидностей имеют строго определенный размер входов в полости и каналы. Поэтому их называют еще «молекулярными ситами» за способность сорбировать лишь определенные компоненты.

Используются для выделения и очистки углеводородов нефти; очистки, осушки и разделения газов (в т.ч. воздуха); осушки фреонов; извлечения радиоактивных элементов.

Твердые адсорбенты бывают пористые и непористые.

Пористость адсорбента определяется отношением суммарного объема пор Vп к общему объему адсорбента Vадс

В зависимости от размера пор различают макропористые, мезопористые и микропористые адсорбенты.

Справочник химика 21

Химия и химическая технология

Общие требования к адсорбентам

Общие требования к адсорбентам [c.308]

Приборы для осушки и очистки газов Общие требования к газовой линия Осушители (адсорбенты) [c.330]

ОБЩИЕ ТРЕБОВАНИЯ К АДСОРБЕНТАМ [c.179]

Следует отметить, что основным методом оценки надежности любого адсорбционного аппарата является использование вероятностно-статистических методов. Количественная оценка при исследовании надежности — основной вопрос проблемы надежности. Количественные критерии надежности, например запасы прочности и устойчивой конструкции, запасы по предельно допустимым значениям температур различных материалов (материала аппарата и слоя адсорбента) при нагреве и охлаждении, скорости абразивного износа адсорбента, характеризуют какую-то одну из сторон надежности. На практике эти запасы часто выбираются интуитивно-эмпирическим методом и носят характер не столько коэффициентов надежности, сколько коэффициентов незнания. Количественные показатели общей надежности аппарата могут быть определены в том случае, если имеется достаточная информация о работе аппарата в реальных условиях или условиях, близких к ним. Такая информация необходима в первую очередь для выявления слабых мест, т. е. систематических источников отказов. Это особенно существенно для адсорбционных аппаратов новой конструкции на этапе опытной эксплуатации, когда требуется постоянная обратная связь, с помощью которой аппарат можно непрерывно улучшать. Для того чтобы информация об отказах и неисправностях аппаратов позволяла точно оценивать его фактическую надежность (и надежность его элементов), служила действенным инструментом в работах по повышению надежности аппаратов, необходимо, чтобы она отвечала следующим требованиям. [c.211]

При разделении неизмененных нефтяных смол первое п основное требование, предъявляемое к адсорбенту и десорбирующим жидкостям, заключается в том, чтобы они не вызывали химических изменений компонентов разделяемой смеси. Размеры пор адсорбентов должны соответствовать размерам молекул разделяемой смеси, что определяет его общую адсорбционную емкость. Адсорбент должен обладать достаточно хорошей специфичностью или адсорбционной избирательностью по отношению к молекулам различных типов структур, что в значительной мере и определяет эффективность разделения нри помощи хроматографических методов. Растворители должны характеризоваться высокой степенью чистоты и определенной вымывающей (десорбирующей) способностью. Многочисленные данные, полученные при изучении вымывающей способности растворителей разной химической природы, показывают, что существует довольно определенная закономерная связь (пропорциональность) между их диэлектрической постоянной, т. е. полярностью, и вымывающей способностью или, что то же самое, адсорбируемостью [38]. [c.448]

Требования к содержанию сернистых соединений в толуоле значительно менее жесткие, чем в случае бензола. Это объясняется более ограниченным использованием толуола в химической промышленности. В стандартах ряда стран содержание серы в толуоле не нормируют. Организация некоторых новых производств и, в частности, производства крезолов из толуола через гидропероксиды изопропилтолуолов вызывает интерес к получению толуола, содержащего 5 и даже 0,2 мг общей серы на 1 кг толуола [36]. Для получения сравнительно небольших объемов особо чистых реактивов (для жидкостных сцинтилляторов) толуол дополнительно очищают серной кислотой, адсорбентами и ректификацией [37], Содержание насыщенных углеводородов в толуоле не лимитируют, исключая стандарт США, ограничивающий содержание примесей парафиновых углеводородов в толуоле высших сортов величиной 1,5%. В лучших сортах толуола содержание бензола и ксилолов не превышает 0,01%. [c.124]

Проблема дезодорации отличается от проблемы регенерации растворителей главным образом тем, что примеси содержатся в значительно меньших концентрациях и задача регенерации адсорбированных соединений обычно не ставится. На установках искусственного климата или кондиционирования воздуха проводится очистка весьма больших объемов воздуха при атмосферном давлении и поэтому требование низкого гидравлического сопротивления очистной аппаратуры становится особенно важным. Это требование вызывает необходимость применять слой активированного угля весьма малой высоты. В большинстве случаев пары, придающие воздуху неприятный запах, состоят из соединений относительно высокого молекулярного веса, которые адсорбируются сравнительно легко и поэтому могут быть полностью удалены даже при небольшой высоте слоя адсорбента. При проектировании промышленной аппаратуры для дезодорации воздушных потоков необходимо обеспечить максимальное сечение для прохода воздуха цри минимальных общих габаритах. Для легкости замены отработанного адсорбента оборудование стандартизовано. Элементы этого оборудования обычно выпускают в виде цилиндрических патронов или более крупных сменных элементов, содержащих адсорбент в виде плоского пли волнистого слоя. [c.304]

Читайте так же:  Как пережить побои

Смолами-адсорбентами, или обеспечивающими смолами, называют ионообменные смолы, которые обладают способностью избирательно поглощать органические вещества по неионному механизму. Обычно в качестве смол-адсорбентов используют иониты с пониженной ионообменной емкостью и высокоразвитой поверхностью. Последнему требованию в наибольшей степени удовлетворяют МП-смолы. Ионообменная способность смол-адсорбентов проявляется, как правило, в ограниченной области pH. Многие смолы-адсорбенты и обесцвечивающие смолы приведены в общем перечне ионитов [c.131]

С. о. могут быть красители самого разнообразного строения, в принципе основными требованиями к С. о. являются их способность адсорбироваться на галогенидах серебра, интенсивно поглощать свет и эффективно передавать энергию возбуждения адсорбенту. Однако непригодность красителей как сенсибилизаторов может быть обусловлена, напр., их склонностью к десенсибилизации (уменьшение чувствительности слоя в области собственного поглощения галогенида серебра), вуалирующим действием, недостаточной стаби.тьностью пли прочностью связи с адсорбентом, в результате чего такие красители легко разлагаются или десорбируются с поверхности микрокристаллов галогенида серебра под влиянием каких-либо других, также адсорбирующихся веществ, вводимых в фотографич. э.мульсию. Практически все известные из применяемых сенсибилизаторов принадлежат к классу полиметиновых красителей, особенно широко используются цианины общей ф-лы [c.397]

Для получения воспроизводимых значений величин удерживания в газо-жидкостной хроматографии необходимо в общем случае стандартизировать не только НЖФ, но и используемые твердые носители, методы получения сорбентов. Однако реализация последних требований практически так же сложна, как и стандартизация свойств твердых адсорбентов [72]. Поэтому в случае заметного вклада адсорбции в удерживаемый объем газо-жидкостная хроматография утрачивает одно из главных своих преимуществ — простое получение сорбента с воспроизводимыми характеристиками. Поэтому представляется оправданным стремление большинства исследователей уменьшить адсорбцию хроматографируемых соединений на твердом носителе или проводить измерения в условиях, в которых вклад адсорбции в удерживание мал по сравнению с вкладом, обусловленным растворением в НЖФ. [c.111]

В качестве адсорбентов используют активированный уголь, силикагель, цеолиты, ионообменные смолы. Применение каждого из этих средств диктуется индивидуальными требованиями технологического процесса, однако общим их положительным качеством является универсальность действия, т. е. способность работать в широком диапазоне веществ. [c.188]

Введение временных технических условий на формованные синтетические цеолиты типов А и X в значительной мере содействовало улучшению адсорбционных и механических свойств цеолитных адсорбентов, изготовляемых на опытных и промышленных установках Советского Союза. Накопленный к настоящему времени опыт применения ВТУ показал, что принятые методы оценки позволяют надежно контролировать качество цеолитов, а показатели, принятые в ВТУ, предъявляют к ним достаточно высокие требования. Хотя действующие временные технические условия в общем регламентируют выпуск качественных цеолитов, накапливающийся опыт производства и применения цеолитных адсорбентов требует дальнейшего совершенствования методов оценки и показателей качества. Этому вопросу и посвящено данное сообщение. [c.207]

Результаты, полученные при использовании метода ртутной порометрии, могут быть использованы для определения структуры не только неорганических оксидов, но также для анализа таких материалов, как адсорбенты, катализаторы, керамика, фильтры, угли, смолы, бумага, кожа, образцы текстильной промышленности, фармацевтические препараты и другие пористые материалы. Однако необходимо иметь в виду, что при используемых в ртутной порометрии высоких давлениях, например, порядка 100-200 МПа, структура некоторых образцов может разрушаться (кремнеземы, например, обычно устойчивы до 200 МПа). Поэтому к измеряемому образцу обычно предъявляются требования по достаточной прочности. Увеличение объема пор при вдавливании ртути по сравнению с объемом пор, определенным по адсорбции азота, может быть связано с разрушением стенок пор. За счет этого становятся доступными ранее закрытые поры, то есть общий объем пор изменяется необратимо (он может изменяться обратимо, если происходит упругая деформация, и в последующих опытах воспроизводимость результатов сохраняется). Но может наблюдаться и обратный эффект — под давлением входы в поры сужаются или полностью закрываются. Сжатие образца зависит от его природы так, замечено, что силикагели сжимаются в большей степени, чем цеолиты- [c.330]

Основное требование, предъявляемое к автоматическому оборудованию, состоит в следующем все входящие в состав установки приборы В каждый заданный момент должны выполнять требуемые операции. Уровень и степень автоматизации хромя-тографического процесса зависят от ряда факторов, различным образом влияющих на конечные результаты. Общие требования — высокая воспроизводимость отдельных операций и способность системы работать длительное время. К автоматическим установкам, применяемым в аналитических целях, предъявляются также такие требования, как повышенная чувствительность и быстрота анализа. Конструкторы сложных автоматических хроматографов часто пытаются найти оптимальное сочетание нередко противоречивых требований. Жидкостная хроматография прошла длинный путь развития от открытых систем с колонками большого диаметра до классических систем низкого давления (вплоть до 30 атм) с колоикам диаметром 8 мм и высокоскоростных систем высокого давления. В настоящее время используются давления до 400 атм и колонки диаметром 1— 3 мм, заполненные адсорбентом с частицами диаметром меньше 10 мкм. [c.45]

В 1975 г. Е. Фитцер [17] делает попытку охарактеризовать ресурсы и области использования тяжелых нефтяных остатков. Автор пытается оценить и количественные соотношения потребления нефтяных остатков в различных отраслях экономики и техники, в сопоставлении с общими их ресурсами. Основные аспекты работы — производство различных типов технологического углерода на основе высокотемпературной переработки нефтяных остатков, области применения и масштабы потребления технического углерода. Для оценки перспектив развития производства и областей технического применения сажи, кокса, графита, адсорбентов, автор считает необходимым предварительно получить надежную информацию но следующим позициям спецификация на сырье (нефтяные остатки) для производства различных видов технического углерода возможности модификации этого сырья с целью приведения их свойств в соответствие с требованиями спецификаций и стоимости спрос рынка и потребности в специальных видах технического углерода, вырабатываемого из нефтяных остатков экономические показатели — сопоставление стоимости получаемых изделий технического углерода с другими процессами переработки нефтяных остатков и капиталовложения в эти процессы. Не пытаясь дать общую картину развития производства технического углерода на базе переработки нефтяных остатков, автор утверждает, что главное направление использования нефтяных остатков должно быть тесно связано с развитием таких ведущих отраслей промышленности, как, например, алюминиевая, производство стали. Свое утверждение он обосновывает данными о перспективном потреблении кокса в этих отраслях в Западной Европе. Автор справедливо делает вывод, что на производство электродного кокса и пека идет лишь часть нефтяных остатков (не менее 25% от перерабатываемой нефти). Главными же направлениями использования этого нефтепродукта остается топливно-энергетическое потребление прямое потребление мазута как топлива, а также предварительная переработка но процессам гидрокрекинга, газо-фикации и использование в качестве исходного материала в про- [c.255]

Хроматографические колонки должны быть приготовлены таким образом, чтобы обмен между подвижной и неподвижной фазами происходил достаточно часто и достаточно быстро. Эти требования справедливы как для заполненных, так и для капиллярных колонок. Они выполняются лучше всего тогда, когда у обеих фаз толщина слоя мала, а общая поверхность раздела велика. В заполненных колонках это требование осуществляется с помощью грубопористой поверхности тонкозернистого твердого носителя или адсорбента. В капиллярных колонках это достигается образованием на внутренних стенках равномерно тонкой, прочно удерживающейся и стабильной пленки соответствующей неподвижной фазы. [c.322]

Для такого расчета адсорбируемое вещество должно обладать высокой избирательностью адсорбции, обеспечивающей однокомпонентность адсорбционной фазы при насыщении адсорбента. Для случая определения удельной поверхности непористых адсорбентов должна быть известна ориентация молекул адсорбата на поверхности, а для определения общего адсорбционного объема пористых адсорбентов должен быть известен мольный объем адсорбируемого вещества. Этим требованиям, по-видимому, отвечает адсорбция га-хлоранилина из водных растворов. [c.166]

По-видимому, из использованных в [1] уравнений наиболее общим является вириальное уравнение (14). Оно было получено Уилкинсом [7], а также в работах [8]. Уравнение этого вида для адсорбции цеолитом получено Баррером и Кохленом [9] на основании теории растворов, в которой цеолит рассматривался как растворитель. Это уравнение пригодно и для адсорбции на неоднородных адсорбентах многие известные уравнения изотерм являются его частными случаями. Все эти уравнения имеют своим пределом, в соответствии с требованиями молекулярной статистики [10], уравнение Генри. Можно ожидать, что уравнение (14) с тремя-четырьмя коэф шциентами удовлетворительно опишет адсорбцию и на других микропористых адсорбентах, начиная от самых малых заполнений. [c.417]

Меры профилактики. В производстве платины и платиноидов, в местах пересыпки пылящих материалов, где допустимо по технологическим условиям, необходимо предусматривать гидрообеспыливание. Применение поверхностно-активных пылесмачиваю-пщх веществ и адсорбентов влаги должно быть согласовано с органами санитарной службы. Выгрузка пыли из очистных устройств и ее транспортировка должны быть механизированы и исключать пылеобразование. Конструкция укрытий и отсосов должна быть неотъемлемой частью оборудования и обеспечивать удобство его обслуживания и ремонта. Основное технологическое оборудование (машины для приема и усреднения сьфья, мельницы, дробилки, реакторы, фильтры, отстойники, центрифуги, печи) должно иметь местные отсосы со скоростью движения воздуха в проемах не менее 2 м/с. Скорость движения воздуха в рабочих гфоемах лабораторных шкафов, в рабочем сечении камеры должна быть не менее 1,5 м/с. Запрещается ручная очистка тары от материалов, содержащих платиноиды. Уборку производственных помещений и оборудования необходимо проводить при включенной приточно-вытяжной вентиляции. Снятие пыли со стен помещений, с оборудования, воздуховодов проводить вакуумным способом. При снятии краски, штукатурки обильно орошать водой соответствующие поверхности. Одним из основных требований к этим производствам является организация технологического процесса с учетом сокращения ручных операций при сохранении поточности производств. В связи с загрязнением рабочих поверхностей оборудования и помещения в целом необходимо проводить регулярную влажную уборку. Необходимы местная и общая вентиляция, механизация всех операций, сопровождающихся выделением пыли [c.469]

Многие адсорбенты содержат неорганические примеси, в частности железо, а также экстрагируемые растворителями органические примеси, которые мешают идентификации разделенных веществ, элюированных с пластинок. Установлено, что силикагели Н, HF254 или HR (Merely удовлетворяют основным требованиям, предъявляемым к адсорбентам общего назначения, применяемым как в хроматографии в тонком слое, так и в высокоэффективной хроматографии в колонках. Эти адсорбенты не содержат связующего, свободны от органических материалов, которые могут быть экстрагированы растворителями, и дают однородное покрытие пластинок, которое может быть успешно использовано при работе с большинством органических растворителей. Силикагель HF254 содержит неорганический флуоресцентный индикатор, позволяющий при просматривании пластинок, облучаемых светом длиной волны 254 нм, детектировать поглощающие флуоресценцию при этой длине волны разделенные вещества в виде неярких розовато-лиловых пятен на зеленом фоне. Силикагель HR является адсорбентом высокой чистоты, и его в высшей степени целесообразно использовать в тех случаях, когда разделенные вешества должны быть вымыты с адсорбента и собраны для дальнейшей идентификации. [c.136]

Таким образом для разделения низкомолекулярных веществ, молекулы которых способны к слабому специфическому взаимодействию (содержат л-связи), сильная специфичность адсорбента должна сочетаться с высокой энергией адсорбции, т.е. должны быть достаточно велики как А Смотреть страницы где упоминается термин Общие требования к адсорбентам: [c.68] [c.28] [c.428] [c.321] [c.276] [c.206] Смотреть главы в: