Частичное сцепленное наследование

Одновременное наследование нескольких признаков. Независимое и сцепленное наследование

Ранее были рассмотрены характерные черты фенотипического проявления и наследования отдельных признаков. Однако фенотип организма представляет собой совокупность многих свойств, за формирование которых отвечают разные гены. Так как общее число генов в генотипе значительно больше числа хромосом, каждая хромосома заключает в себе комплекс генов. В связи с этим неаллельные гены могут располагаться либо в разных хромосомах, либо входить в состав одной из них, занимая разные локусы АВС, КМР. Этим определяется характер наследования группы признаков, которое может быть независимым или сцепленным.

Независимое наследование признаков. Такой характер наследования признаков впервые был описан Г. Менделем в опытах на горохе, когда одновременно анализировалось наследование в ряду поколений нескольких признаков, например цвета и формы горошин (рис. 6.11). Каждый из них в отдельности подчинялся закону расщепления в F2. В то же время разные варианты этих признаков свободно комбинировались у потомков, встречаясь как в сочетаниях, наблюдаемых у их родителей (желтый цвет и гладкая форма или зеленый цвет и морщинистая форма), так и в новых сочетаниях (желтый цвет и морщинистая форма или зеленый цвет и гладкая форма). На основании анализа полученных результатов Г. Мендель сформулировалзакон независимого наследования признаков, в соответствии с которым: «Разные пары признаков, определяемые неаллельными генами, передаются потомкам независимо друг от друга и комбинируются у них во всех возможных сочетаниях».

Очевидно, этому закону должны подчиняться в первую очередь неаллельные гены, располагающиеся в разных (негомологичных) хромосомах. В таком случае независимый характер наследования признаков объясняется закономерностями поведения негомологичных хромосом в мейозе. Названные хромосомы образуют со своими гомологами разные пары, или биваленты, которые в метафазе I мейоза случайно выстраиваются в плоскости экватора веретена деления. Затем в анафазе I мейоза гомологи каждой пары расходятся к разным полюсам веретена независимо от других пар. В результате у каждого из полюсов возникают случайные сочетания отцовских и материнских хромосом в гаплоидном наборе (см. рис. 3.75). Следовательно, различные гаметы содержат разные комбинации отцовских и материнских аллелей неал-лельных генов.

Разнообразие типов гамет, образуемых организмом, определяется степенью его гетерозиготности и выражается формулой 2 n , где n — число локусов в гетерозиготном состоянии. В связи с этим дигетерозиготные гибриды F1 образуют четыре типа гамет с одинаковой вероятностью. Реализация всех возможных встреч этих гамет при оплодотворении приводит к появлению в F2 четырех фенотипических групп потомков в соотношении 9:3:3:1. Анализ потомков F2 по каждой паре альтернативных признаков в отдельности выявляет расщепление в соотношении 3:1.

Рис. 6.11. Независимое наследование признаков (цвета и формы горошин)

Открытие независимого характера наследования разных признаков у гороха дало возможность Г. Менделю высказать предположение о дискретности наследственного материала, в котором за каждый признак отвечает своя пара наследственных задатков, сохраняющих в ряду поколений свою структуру и не смешивающихся друг с другом. Современные представления о надмолекулярной организации наследственного материала в хромосомах и закономерностях их передачи в ряду поколений клеток и организмов объясняют независимый характер наследования признаков расположением соответствующих генов в негомологичных хромосомах.

Рис. 6.12. Анализирующее (моногибридное) скрещивание

Объяснение см. в тексте

Анализирующее скрещивание. В опытах Г. Менделя наследственная конституция гибридов F1 устанавливалась на основе анализа результатов их самоопыления, получаемых в F2. В настоящее время с целью выяснения генотипа организмов с доминантным фенотипом (гомо- или гетерозигота) широко применяют также анализирующее скрещивание. Оно заключается в скрещивании организма, генотип которого необходимо определить, с организмом, несущим рецессивный признак, а следовательно, гомозиготным по рецессивному аллелю (рис. 6.12).

Так как гомозиготные организмы образуют один тип гамет: аа — (a), aabb — (ab), aabbcc — (abc) и т.д., — при анализирующем скрещивании количество фенотипов потомков зависит от числа типов гамет, образуемых организмом с доминантным фенотипом. Если последний гомозиготен по анализируемым генам, то он также образует только один тип гамет и потомство от анализирующего скрещивания единообразно и имеет доминантный фенотип (рис. 6.12, I).

Если анализируемый организм гетерозиготен по одному гену, он образует два типа гамет и при анализирующем скрещивании появляются потомки двух разных фенотипов с доминантным или рецессивным признаком (рис. 6.12, II).

Дигетерозиготный организм при анализирующем скрещивании дает четыре вида потомков (рис. 6.13).

В том случае, когда неаллельные гены А и В наследуются независимо, располагаясь в разных хромосомах, Дигетерозиготный организм образует четыре типа гамет с равной вероятностью. Поэтому в результате анализирующего скрещивания четыре фенотипически различающиеся вида потомков появляются в соотношении 1:1:1:1 и несут различные сочетания вариантов двух признаков.

Рис. 6.13. Анализирующее (дигибридное) скрещивание Объяснение см. в тексте

Сцепленное наследование признаков. Анализ наследования одновременно нескольких признаков у дрозофилы, проведенный Т. Морганом, показал, что результаты анализирующего скрещивания гибридов Fi иногда отличаются от ожидаемых в случае их независимого наследования. У потомков такого скрещивания вместо свободного комбинирования признаков разных пар наблюдали тенденцию к наследованию преимущественно родительских сочетаний признаков. Такое наследование признаков было названо сцепленным. Сцепленное наследование объясняется расположением соответствующих генов в одной и той же хромосоме. В составе последней они передаются из поколения в поколение клеток и организмов, сохраняя сочетание аллелей родителей.

Зависимость сцепленного наследования признаков от локализации генов в одной хромосоме дает основание рассматривать хромосомы как отдельные группы сцепления.

На рис. 6.14 представлены результаты анализа наследования признаков окраски тела и формы крыльев у дрозофилы, а также их цитологическое обоснование. Обращает внимание, что при анализирующем скрещивании самцов из F1 появлялось всего два вида потомков, сходных с родителями по сочетанию вариантов анализируемых признаков (серая окраска тела и нормальные крылья или черная окраска тела и короткие крылья) в соотношении 1:1. Это указывает на образование самцами F1 всего двух типов гамет с одинаковой вероятностью, в которые попадают исходные родительские сочетания аллелей генов, контролирующих названные признаки (BV или bv).

При анализирующем скрещивании самок F1 появлялось четыре вида потомков со всеми возможными сочетаниями признаков. При этом потомки с родительскими сочетаниями признаков встречались в 83%. У 17% потомков имелись новые комбинации признаков (серая окраска тела и короткие крылья или черная окраска тела и нормальные крылья). Видно, что и в этих скрещиваниях проявляется склонность к сцепленному наследованию либо доминантных признаков, либо рецессивных (83%). Частичное нарушение сцепления (17% потомков) было объяснено процессом кроссинговера — обменом соответствующими участками гомологичных хромосом в профазе I мейоза (см. рис. 3.72).

Из результатов скрещивания следует, что самки дрозофилы образуют четыре типа гамет, большинство из которых (83%) некроссоверные ((BV) и (bv)), 17% образуемых ими гамет появляются в результате кроссинговера и несут новые комбинации аллелей анализируемых генов ((Bv) и (bV)). Различия, наблюдаемые при скрещивании самцов и самок из F1 с рецессивными гомозиготными партнерами объясняются тем, что по малопонятным причинам у самцов дрозофилы не происходит кроссинговера. В итоге самцы-дигетерозиготы по генам, расположенным в одной хромосоме, образуют два типа гамет. У самок кроссинговер имеет место и приводит к образованию некроссоверных и кроссоверных гамет, по два типа каждых. Поэтому в потомстве от анализирующего скрещивания появляется четыре фенотипа, два из которых обладают новыми по сравнению с родителями сочетаниями признаков.

Рис. 6.14. Сцепленное наследование признаков

(цвета тела и длины крыльев у дрозофилы):

I — скрещивание чистых линий, II, III — анализирующее скрещиваний самцов и самок из F1.

Изучение наследования других сочетаний признаков показало, что процент кроссоверного потомства для каждой пары признаков всегда один и тот же, но он различается для разных пар. Это наблюдение стало основанием для заключения, что гены в хромосомах расположены в линейном порядке. Выше отмечалось, что хромосома является группой сцепления определенных генов. Гомологичные хромосомы — это одинаковые группы сцепления, которые отличаются друг от друга лишь аллелями отдельных генов. При конъюгации гомологи сближаются своими аллельными генами, а при кроссинговере они обмениваются соответствующими участками. В результате появляются кроссоверные хромосомы с новым набором аллелей. Частота, с которой происходит обмен на участке между двумя данными генами, зависит от расстояния между ними(правило Т. Моргана). Процент кроссоверных гамет, несущих кроссоверные хромосомы, косвенно отражает расстояние между генами. Это расстояние принято выражать в сантшюрганидах. За одну сантиморганиду принимают расстояние между генами, при котором образуется 1% кроссоверного потомства (кроссоверных гамет).

При увеличении расстояния между генами увеличивается вероятность кроссинговера на участке между ними в клетках-предшественницах гамет. Так как в акте кроссинговера участвуют две хроматиды из четырех, присутствующих в биваленте, то даже в случае осуществления обмена между генами данной пары во всех клетках-предшественницах гамет процент кроссоверных половых клеток не может превысить 50 (рис. 6.15). Однако такая ситуация возможна лишь теоретически. Практически с увеличением расстояния между генами возрастает возможность прохождения одновременно нескольких кроссинговеров на данном участке (см. рис. 5.9). Так как каждый второй перекрест приводит к восстановлению прежнего сочетания аллелей в хромосоме, с увеличением расстояния число кроссоверных гамет может не увеличиваться, а уменьшаться. Из этого следует, что процент кроссоверных гамет является показателем истинного расстояния между генами лишь при достаточно близком их расположении, когда возможность второго кроссинговера исключается.

Читайте так же:  Приказ по уборке листвы

Нарушение сцепленного наследования родительских аллелей в результате кроссинговера позволяет говорить о неполном сцеплении в отличие от полного сцепления, наблюдаемого, например, у самцов дрозофилы.

Использование анализирующего скрещивания в опытах Т. Моргана показало, что с его помощью можно выяснять не только состав пар неаллельных генов, но и характер их совместного наследования. В случае сцепленного наследования признаков по результатам анализирующего скрещивания можно установить также расстояние между генами в хромосоме.

Рис. 6.15. Схема, поясняющая низкий процент кроссоверных гамет

(по отношению к двум данным генам)

Плюсом обозначены клетки-предшественницы гамет, в которых кроссинговер прошел на участке между двумя данными генами; зачернены кроссоверные гаметы

Урок Сцепленное наследование генов

Урок по биологии для 10 класса

«Сцепленное наследование генов».

Сформировать у учащихся представление о сцепленном наследовании, группах сцепления, генетическом картировании.

Научить школьников объяснять причины сцепленного наследования генов, а также — нарушения сцепления между ними, которое происходит в профазе первого деления мейоза.

Убедить старшеклассников в том, что генетическое картирование дает возможность установить истинное местоположение (локализацию) отдельных генов в хромосоме, а затем – воздействовать на материальную основу наследственности.

Оборудование. Таблица с мутациями у дрозофилы, образование половых клеток и кроссинговер, инструкционные карты, текст проверочной работы, диск Кирилла и Мефодия» 10 кл., проектор, компьютер, экран.

Тип урока. Изучение нового материала и первичное закрепление знаний и способов деятельности.

Методы используемые на уроке: репродуктивные, частично-поисковые.

Сегодня мы продолжаем изучать раздел «Закономерности наследственности и изменчивости», вновь будем решать генетические задачи.

Сейчас открываем тетради, записываем число, но оставляем место для темы урока, ее вы назовете мне сами позже. Мы уже решали задачи о человеке, о собаках, кошках, но объектом в первой задаче сегодня будет плодовая мушка дрозофила – любимый объект всех генетиков. А почему она столь любима, нам расскажет_____________

Она подготовила небольшое сообщение. Ваша задача внимательно прослушать сообщение и записать в тетрадь — Достоинства мушки дрозофилы, как объекта генетики. Прямо по пунктам 1, 2..

Один ученик делает сообщение. Ребята слушают, выписывают достоинства в тетрадь.

Достоинства мушки дрозофилы, как объекта генетики.

легко разводится в неволе,

-обладает большой изменчивостью,

-небольшое число хромосом.

Созданипе проблемной ситуации, формулирование темы и цели урока.

Теперь мы много знаем о любимице генетиков, и можем смело приступать как настоящие исследователи к задаче.

У мушки дрозофилы серая окраска тела доминирует над темной, а длинные крылья над зачаточными. От скрещивания серой мушки имеющей длинные крылья с темной мушкой с зачаточными крыльями в F 1 получили всех мушек с серым телом и длинными крыльями. Далее F 1 скрестили с рецессивной гомозиготой. Какое потомство следует ожидать в результате этого скрещивания?

Один ученик решает у доски остальные за партами

Теоретически все правильно по закону Менделя мы должны получить 4 генотипа, 4 фенотипа по 25% каждый, но на самом деле в результате такого скрещивания получили 42% мушек с серыми длинными крыльями и 42% мушек с темными зачаточными крыльями. Результат записываю на доске. Как вы думаете, в каком случае может быть такой результат? Обратите внимание, что больше мушек с такими признаками как у родителей.

Как могут наследоваться эти гены?

Где они располагаются?

Вот мы и подошли к теме сегодняшнего урока- Какое наследование мы будем сегодня изучать? Записываю тему на доске.

А по 8% составляют перекомбинированные признаки. Записываю на доске. Изучая эту тему, мы и должны ответить, почему у нас в задаче получилось такое соотношение не соответствующее законам Менделя. И в результате чего появились 8% с перекомбинированными признаками. Это наша цель на сегодняшний урок.

У любого организма генов гораздо больше чем хромосом. У человека 23 пары хромосом, 22 пары аутосомы и 1 пара половых хромосом, а генов около миллиона. Значит в одной хромосоме размещается несколько тысяч генов.

Как наследуются гены, расположенные в одной хромосоме и какие в этом случае действуют законы вы и узнаете из сегодняшнего урока.

Дети высказывают предположения.

Эти пары генов наследуются

Совместно. Иначе говоря, они сцеплены.

Эти гены локализованы (или располагаются) в одной хромосоме.

Сцепленное наследование генов.

Записывают тему в тетради.

Изучение нового материала.

Информация на экране компьютера

Слайд урок № 31 «Сцепленное наследование генов» Посмотрите ребята план урока- какие вопросы мы сегодня будем изучать.

Слайд 2 (Неаллельные гены).

Исследования генетиков показали, что законы Менделя справедливы, если гены, отвечающие за разные признаки, находятся в разных парах гомологичных хромосом (Нижний рисунок)

А если разные гены находятся в одной паре гомологичных хромосом (Верхний рисунок) то законы действуют другие.

Слайд 3 (Сцепленные гены).

Внимательно прочитайте информацию и выполните задание А инструкционной карточки. На работу __ минут.

Итак, давайте посмотрим, что вы узнали?

Какие гены называют сцепленными?

Приведите примеры сцепленных признаков.

Слайд 4 (Опыты Моргана).

Закономерности наследования при нахождении генов в одной хромосоме были установлены американским биологом Томасом Морганом.

___________подготовил сообщение о жизни этого ученого. Ваша задача внимательно прослушать и кратко записать вклад Томаса Моргана в биологию.

Если любимым объектом Менделя был горох, то у Моргана-мушка дрозофила. Томас, проводя эксперимент по условиям нашей задачи, получил результат, который мы уже знаем, противоречащий законам Менделя. Давайте послушаем, к каким выводам он пришел.

Откройте слайд 5 (Закон сцепленного наследования).

Посмотрите, как формулируется закон Моргана и запишите его в тетрадь.

Гены, локализованные в одной хромосоме образуют группу сцепления и наследуются вместе. Рассмотрите схему, сколько существует групп сцепления у разных организмов.

Этот закон объясняет, почему 84% (42%+42%) имели генотип и фенотип сходный с родителями. Но как появились новые комбинации, вопрос пока остался открытым.

Откройте слайд 6.

Сейчас прочитайте учебник на стр. 219 2 абзац и выполните задание В инструкционой карточки. На работу___минут.

Давайте проверим, что вы узнали на пути к поставленной цели.

Почему же все-таки среди гибридов второго поколения появляется небольшое число особей с перекомбинацией родительских признаков?

Каким может быть сцепление генов?

При каком условии наблюдается полное сцепление?

При каком условии наблюдается неполное сцепление?

Когда нарушается сцепление генов?

Когда вероятность кроссинговера выше?

Оказывается, когда самцы гетерозиготны. А самки гомозиготны сцепление полное, а если наоборот, то сцепление не полное.

Слайд 8 (Генетические карты).

Эту закономерность: чем больше частота перекреста, тем дальше гены располагаются, друг от друга используют для составления генетических карт.

Что такое генетические карты, зачем они составляются и какие уже составлены. Нам расскажет _____________, который готовил сообщение по этой теме. Ваша задача внимательно прослушать сообщение, записать определение и значение генетических карт.

Итак, что такое генетическая карта мы видим на слайде.

А где могут использоваться генетические карты?

Читают план урока.

Слушают, рассматривают рисунки.

Изучают информацию слайда. Выполняют самостоятельную работу.

Отвечают на вопросы

Гены, расположенные в одной хромосоме называют сцепленными и обычно наследуются вместе, не обнаруживая независимого распределения.

Красный цвет — темные стебли и листья

Белые цветки — светлые стебли и листья

Длинная шея — длинные конечности,

Короткая шея — короткие конечности

Темные глаза – темные волосы

Светлые глаза – светлые волосы.

Слушают сообщение, записывают вклад ученого в тетрадь.

Смотрят видеофрагмент с опытами Моргана.

Отвечают на вопросы.

Закон сцепленного наследования: гены, расположенные в одной хромосоме, наследуются совместно (сцеплено).

Отвечают на вопросы.

В результате кроссинговера

Полное и неполное.

Если не происходит перекреста хромосом и обмена генами.

Если происходит кроссинговер и гомологичные хромосомы обмениваются участками.

В процессе мейоза при конъюгации.

Чем дальше друг от друга расположены гены.

Это схема относительного расположения генов, находящихся в одной группе сцепления. Она показывает последовательность расположения генов в хромосоме и расстояние между ними.

Создание генетических карт необходимо для развития генетики, селекции, генной инженерии, а так же эволюционных исследований.

Закрепление и проверка усвоения материала.

Перед итоговой проверкой внимательно просмотрите свой конспект, прочитайте выводы по уроку и начинаем проверочную работу.

Почему в нашей задаче получилось такое расщепление?

Отрицают ли опыты Моргана 2 закон Менделя?

Домашнее задание. Параграф 57 и записи в тетради.

Пишут проверочную работу.

Итоговое тестирование по уроку

Тема «Сцепленное наследование генов»

1. Гены, расположенные в одной хромосоме, при мейозе попадают в …

А) разные хромосомы,

Б) одну хромосому,

В) спирализация хромосом.

2. Какую генетическую закономерность иллюстрирует следующий факт: розы с красными цветками имеют темные стебли и листья, а розы с белыми цветками – светлые стебли и листья?

А) сцепленное наследование генов,

Б) полное доминирование,

В) промежуточное наследование.

3. Что отражает закон Моргана?

А) закон единообразия,

Б) закон сцепленного наследования признаков, если гены находятся в одной хромосоме,

В) закон независимого расщепления признаков, если гены находятся в разных парах гомологичных хромосом.

4. Сколько пар хромосом отвечают за наследование окраски тела и формы крыльев у дрозофилы?

5. Определите на рисунке, между какими генами наиболее высока вероятность перекреста

a в с d А) ав и АВ

Читайте так же:  Гражданский кодекс рф 2018 последняя редакция ст 3171

A В С D

6. При … … генов гомологичные хромосомы обмениваются своими участками. Это обеспечивает возможность возникновения новых сочетаний генов и признаков.

Итоговое тестирование по уроку

Тема «Сцепленное наследование генов»

1. Закон сцепленного наследования утверждает что:

А) гены одной соматической клетки наследуются совместно,

Б) гены, расположенные в одной хромосоме, наследуются совместно

В) гены, расположенные в разных хромосомах, наследуются совместно

2. Определите на рисунке, между какими генами наиболее высока вероятность перекреста

a в с d А) ав и АВ

A B C D

3. Как правило, люди с темными волосами имеют карие глаза, а со светлыми волосами – голубые или серые глаза. Чем это обусловлено?

А) полное доминирование,

Б) сцепленное наследование генов,

В) промежуточное наследование.

4. Гены, расположенные в одной хромосоме, наследуются совместно. Это закон:

5. Гены, расположенные в одной паре хромосом называются:

6. Все гены одной хромосомы образуют одну … … они попадают в одну гамету при мейозе.

Сообщение «Жизнь и труд Томаса Моргана»

Полное имя Томас Хант Морган родился в 1866 г. В Лексингттоне (штат Кентукки). В 20 лет окончил университет родного штата, а через 5 лет университет в Балтиморе. Он сразу стал профессором с начало колледжа, потом Колумбийского университета, а с 1928 г. до конца жизни возглавлял лабораторию в Калифорнийском технологическом институте.

Коллеги из Колумбийского университета были удивлены, когда он, получивший уже широкую известность как эмбриолог, решил заняться модной, но неустоявшейся наукой-генетикой. Морган обычно работал с кроликами, но денег на содержание большого вивария ему не дали. Выбор объекта экспериментов — крошечной плодовой мушки дрозофилы был, его величайшей удачей. Открытия не замедлили появиться. В общем, Морган подтвердил выводы Менделя, но существенно дополнил их. Были обнаружены признаки, которые наследовались вместе. И количество таких групп равно количеству хромосом. Далее Морган с учениками показал, что гены в хромосомах расположены линейно, как бусины на нитке. И, наконец, правило сцепления оказалось не абсолютным. Таким образом, был выяснен цитологический механизм законов Менделя. Открытия Моргана привели к окончательному доказательству и завершению хромосомной теории наследственности. Морган показал способ расчета расстояния между генами для составления генетических карт.

Каждое такое открытие по праву можно назвать величайшим. Но не только они принесли Моргану всемирную славу. Из его лаборатории вышла в свет та генетика первой половины 20 века, которую теперь называют классической. Морган дал генетике объект исследований, набор методов, воспитал многочисленных учеников, многие из которых также приобрели мировую известность. В этом его величайшая заслуга. За труды по изучению наследственности Томас Морган в 1933 году был удостоен Нобелевской премии. В течение ряда лет он был президентом Национальной Академии наук США, а в 1932 стал почетным членом АН СССР. Умер Морган в 1945 году.

Сообщение «Генетические карты»

Генетические карта — это схема относительного расположения генов, находящихся в одной группе сцепления. Она показывает последовательность расположения генов в хромосоме и расстояние между ними.

Расстояние между генами расположенными в одной хромосоме, определяют в процентах гамет, при образовании которых, произошла перекомбинация генов. Это расстояние выражается в морганидах, в честь Т.Моргана. 1%=1 морганиде. По результатам анализирующего скрещивания были определены расстояния между генами в хромосомах дрозофилы, мышей, шелкопряда, дрожжей у растений ячменя, гороха, хлопчатника, кукурузы, пшеницы, томата (на слайде показана генетическая карта 2 хромосомы томата). Каждая пара хромосом имеет своеобразный рисунок – цитологичекую карту, а генетическая карта представляет ее схематичное отражение (рисунок). Картируются и хромосомы человека. Опираясь на новые технологии, в 1989 г. была принята международная программа «Геном человека», в рамках которой работают ученые разных стран, в том, числе и России по определению полной последовательности всех нуклеотидных звеньев генома человека и определению их местоположения. В настоящее время картированы около 10 тыс. генов. По телевидению и в прессе иногда можно услышать предположения об утрате Y хромосомы и вымирании через 5 млн. лет мужского пола, но ученые расшифровали код этой хромосомы и утверждают, что она проживет еще как минимум 50-60 млн. лет. В Y хромосоме содержится всего 78 генов, это гораздо меньше, чем в других хромосомах. Для того чтобы составить карту, потребовалось изучить 300 тысяч 269 жителей разных стран.

На основании полученных данных построены карты. Можно с уверенностью ожидать в недалеком будущем появление молекулярно-генетических карт, которые будут нести не только исчерпывающую информацию о расположении генов в хромосоме, но и полную информацию об их нуклеотидных последовательностях.

Существуют также серьезные перспективы применения генетических карт в практике. Генетические карты человека могут оказаться очень полезными в развитии медицины и здравоохранения. Уже в настоящее время знания о локализации гена на определенной хромосоме используют при диагностике ряда тяжелых наследственных заболеваний человека. В будущем не только резко расширится применение такого подхода, но и появится возможности для генной терапии, т.е. исправления структуры или функции генов.

Селекция животных и растений – другое важное направление, в котором уже используются генетические карты. В микробиологии применение генетических карт также очень важно. Микробиологическая промышленность не только ближайшего будущего, но и современная, уже немыслима без детального знания генетических карт. Создание групп микроорганизмов, способных синтезировать необходимые для фармакологии и сельского хозяйства белки, гормоны и другие сложные органические соединения, возможно только на основе генно-инженерных методов, т.е. базируется на знании генетических карт соответствующих микроорганизмов.

В дальнейшем число видов растений, животных и микроорганизмов, для которых будут построены детальные генетические карты. Существенно увеличится.

Сообщение о мушке дрозофиле

Дрозофилы, род двукрылых насекомых семейства плодовых мушек. Длина до 3.5 мм. Около 1000 видов, распространены широко, более многочисленны в тропиках и субтропиках. Обыкновенная плодовая мушка — классический объект генетики т. к.

легко разводится в неволе (в лабораториях она хорошо живет в пробирках на засеянных дрожжевыми клетками растертых бананах или манной каше с изюмом),

очень плодовита (каждые 10-15 дней при оптимальной температуре дает новое поколение и в каждом поколении до тысячи потомков),

обладает большой изменчивостью рисунок 108 учебника

легко изучать (Усыпленных на время эфипром мушек хорошо можно рассмотреть под лупой, отбирать изменившихся особей, а потом их скрещивать, самцы и самки легко различимы: у самца брюшко меньше и темнее),

небольшое число хромосом (в диплоидном наборе 8) рисунок 110 учебника.

Изучение наследование признаков у дрозофилы послужило экспериментальной основой хромосомной теории наследственности.

Сцепленное наследование: аутосомная, полное, частичное;

Фенокопии и генокопии

Термин «фенокопия»

Пример 1. У насекомых темная окраска тела может быть обусловлена генетически. Однако при низких температурах появляются меланистические формы и у насекомых с генотипом, который при в стандартных условиях дает обычную окраску. Тогда морфоз «темное тело» является фенокопией мутации «темное тело».

Пример 2. Яровой тип развития у злаков обусловлен определенным генотипом. Яровизация озимых злаков обусловлена воздействием внешних факторов. Тогда развитие озимых злаков по яровому типу является фенокопией наследственно яровых форм.

Термин «генокопия» используется, если рассматривается два и более мутантных генотипа. Например, у дрозофилы ярко-красную окраску глаз обеспечивают мутации в разных генах: v, cn, st, cd. Тогда дрозофилы с разными генотипами, но ярко-красными глазами будут генокопиями друг друга.

Механизмы возникновения генокопий различны. Например, цепочка превращений исходного вещества в конечный продукт X→Y→Z может быть прервана в результате мутаций в гене A, контролирующем переход X→Y, или в гене B, контролирующем переход Y→Z.

Генокопии — сходное фенотипическое проявление разных генов.

Фенокопии — это не наследственные изменения фенотипа организма, под действием внешней среды и копирующие проявление наследственного изменения.

Аутосомное наследование (autosomal inheritance) [греч. autos — сам и soma — тело] — независимое от пола (не сцепленное с полом) наследование какого-либо признака.

Наследование, сцепленное с полом — наследование какого-либо гена, находящегося в половых хромосомах. Наследование признаков, проявляющихся только у особей одного пола, но не определяемых генами, находящимися в половых хромосомах,- называется наследованием, ограниченным полом.

Наследованием, сцепленным с X-хромосомой, называют наследование генов в случае, когда мужской пол гетерогаметен и характеризуется наличием Y-хромосомы (XY), а особи женского пола гомогаметны и имеют две X-хромосомы (XX). Таким типом наследования обладают все млекопитающие (в том числе человек), большинство насекомых и пресмыкающихся.

Наследованием, сцепленным с Z-хромосомой, называют наследование генов в случае, когда женский пол гетерогаметен и характеризуется наличием W-хромосомы (ZW), а особи мужского пола гомогаметны и имеют две Z-хромосомы (ZZ). Таким типом наследования обладают все представители класса птиц.

Если аллель сцепленного с полом гена, находящегося в X-хромосоме или Z-хромосоме, является рецессивным, то признак, определяемый этим геном, проявляется у всех особей гетерогаметного пола, которые получили этот аллель вместе с половой хромосомой, и у гомозиготных по этому аллелю особей гомогаметного пола. Это объясняется тем, что вторая половая хромосома (Y или W) у гетерогаметного пола не несет аллелей большинства или всех генов, находящихся в парной хромосоме.

Таким признаком гораздо чаще будут обладать особи гетерогаметного пола. Поэтому заболеваниями, которые вызываются рецессивными аллелями сцепленных с полом генов, гораздо чаще болеют мужчины, а женщины часто являются носителями таких аллелей.

Читайте так же:  Договор купли-продажи квартиры по доверенности от продавцов образец

Сцепленное наследование — наследование признаков, гены которых локализованы в одной хромосоме. Сила сцепления между генами зависит от расстояния между ними: чем дальше гены располагаются друг от друга, тем выше частота кроссинговера и наоборот.

Полное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются так близко друг к другу, что кроссинговер между ними становится невозможным.

Неполное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются на некотором расстоянии друг от друга, что делает возможным кроссинговер между ними.

частично сцепленное с полом наследование: аллели изучаемого гена находятся в гомологичных друг другу участках Х-хромосомы и Y-хромосомы;

«Полное и неполное сцепление генов. Генетические карты хромосом».

Поурочное планирование 10 класс

Тема: «Полное и неполное сцепление генов. Генетические карты хромосом».

Цель урока: ознакомить учащихся с процессом полного и неполного сцепления генов; и сформировать представление о генетических картах хромосом.

Учебно – воспитательные задачи:

Раскрыть сущность явления сцепленного наследования генов.

Сформировать знания об основных положениях закона Т. Моргана.

Познакомить с принципом составления генетических карт

Развивать логическое мышления учащихся.

Оборудование, наглядные пособия : таблицы по общей биологии, иллюстрирующие сцепленное наследование генов и признаков, презентация к уроку, задачи на закрепление нового материала.

Тип урока: Урок изучения нового материала.

Методы: объяснительно — иллюстративный.

I Организационный момент

Проверка личного состава учащихся и визуальной готовности класса к уроку.

II Проверка знаний учащихся

1. Назовите три закона Г. Менделя?

2. Каких правил придерживался Г. Мендель при проведении своих опытов?

3. Сформулируйте закон чистоты гамет. Кому принадлежит открытие этого закона?

4. Всегда ли признаки можно чётко разделить на доминантные и рецессивные?

5. Какое название получило это явление?

6. Всегда ли по фенотипу можно определить, какие гены содержит данная особь? Приведите пример.

7. Можно ли установить генотип особей, которые не различаются по фенотипу? Какой метод используют для этого?

8. Какими особенностями характеризуется дигибридное скрещивание?

Молодцы! С этим этапом работы Вы справились

III Изучение нового материала:

Сцепленное наследование генов

Г.Мендель проследил наследование семи пар признаков у гороха. Многие исследователи, повторяя опыты Менделя, подтвердили открытые им законы. Было признано, что эти законы носят всеобщий характер. Однако в 1906 г. английские генетики В.Бэтсон и Р.Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве. Потомки всегда повторяли признаки родительских форм. Постепенно факты исключений из третьего закона Менделя накапливались. Стало ясно, что не для всех генов характерно независимое распределение в потомстве и свободное комбинирование.

Любой организм обладает многообразием морфологических, физиологических, биохимических и прочих признаков и свойств, причем каждый признак или свойство контролируется одним или несколькими генами, локализованными в хромосомах.

Однако если число генов организма огромно и может исчисляться десятками тысяч, то число хромосом сравнительно невелико и, как правило, измеряется несколькими десятками. Поэтому в каждой паре хромосом локализованы сотни и тысячи аллельных генов, образующих группы сцепления.

Установлено полное соответствие между числом групп сцепления и числом пар хромосом. Например, у кукурузы набор хромосом 2n = 20 и 10 групп сцепления, а у дрозофилы 2n = 8 и 4 группы сцепления, то есть число групп сцепления равно гаплоидному набору хромосом.

Закон Томаса Моргана

Гены, локализованные в одной хромосоме, передаются совместно, и способ их наследования отличается от наследования генов, локализованных в разных парах гомологичных хромосом.

Так, например, при независимом распределении хромосом дигибрид АаВb образует четыре типа гамет ( АВ , аВ , Аb , аb ), а при условии полного сцепления такой же дигибрид даст только два типа гамет ( АВ и аb ), так как эти гены расположены в одной хромосоме.

Разработка проблемы сцепленного наследования генов принадлежит школе Т.Моргана (1866–1945). Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила. Мушка каждые две недели при температуре 25 °С дает многочисленное потомство. Самец и самка хорошо различимы – у самца брюшко меньше и темнее. Кроме того, они имеют различия по многочисленным признакам и могут размножаться в пробирках на дешевой питательной среде.

Изучая закономерности наследования генов, локализанных в одной и той же хромосоме , Морган пришел к выводу, что они наследуются сцепленно . Это и есть закон Т.Моргана.

Кроссинговер — процесс обмена участками гомологичных хромосом во время конъюгации в профазе I мейоза. Помимо мейотического, описан также митотический кроссинговер. Хромосома разделяется на эти участки в определённых точках, одних и тех же для одного вида, что может быть определением вида на генетическом уровне, месторасположение этих точек задаётся единственным геном.

Поскольку кроссинговер вносит возмущения в картину сцепленного наследования, его удалось использовать для картирования «групп сцепления» (хромосом). Возможность картирования была основана на предположении о том, что, чем чаще наблюдается кроссинговер между двумя генами , тем дальше друг от друга расположены эти гены в группе сцепления и тем чаще будут наблюдаться отклонения от сцепленного наследования.

Полное и неполное сцепление

Для определения типа наследования двух пар генов (сцепленное или независимое) необходимо провести анализирующее скрещивание и по его результатам сделать вывод о характере наследования генов. Рассмотрим три возможных варианта результатов анализирующего скрещивания.

1) Независимое наследование .

Если в результате анализирующего скрещивания среди гибридов образуется четыре класса фенотипов, значит, гены наследуются независимо.

2) Полное сцепление генов .

При полном сцеплении генов А и В по результатам анализирующего скрещивания обнаруживают-
ся два фенотипических класса гибридов, полностью копирующих родителей.

3) Неполное сцепление генов .

В случае неполного сцепления генов А и В при анализирующем скрещивании появляются четыре фенотипа, два из которых имеют новое сочетание генов: Аbаb ; аВаb . Появление подобных форм свидетельствует о том, что дигибрид с гаметами АВ │ и аb │ образует кроссоверные гаметы Аb │ и аВ │. Появление таких гамет возможно только в результате обмена участками гомологичных хромосом, то есть в процессе кроссинговера. Количество кроссоверных гамет значительно меньшее, чем некроссоверных.

Частота перекреста пропорциональна расстоянию между генами. Чем ближе расположены гены в хромосоме, тем теснее сцепление между ними и тем реже они разделяются при перекресте. И наоборот, чем дальше гены отстоят друг от друга, тем слабее сцепление между ними и чаще перекрест. Следовательно, о расстоянии между генами в хромосомах можно судить по частоте перекреста.

Под генетическим картированием обычно понимают определение положения какого-либо гена по отношению к другим генам.

Рассмотрим порядок составления генетических карт.

1. Установление группы сцепления (то есть определение хромосомы, в которой локализован данный ген). Для этого необходимо иметь хотя бы по одному гену-маркеру в каждой группе сцепления.

2. Нахождение места локализации исследуемого гена в хромосоме. Для этого проводится скрещивание мутантной формы с нормальной и учитывается результат кроссинговера.

3. Определение расстояния между сцепленными генами, что позволяет составлять генетические карты хромосом, на которых указаны порядок расположения генов в хромосомах и относительные расстояния их друг от друга. Чем частота кроссинговера выше, тем на большем расстоянии друг от друга располагаются гены. Если установлено, что между сцепленными генами А и В частота кроссинговера 10%, а между генами В и С – 20%, то очевидно, что расстояние ВС в 2 раза больше, чем АВ . Расстояние между генами выражается в единицах, соответствующих 1% кроссинговера. Эти единицы называют морганидами.

Таким образом, на основе данных о частоте кроссинговера составляются генетические карты.

IV Закрепление знаний

Решение генетической задачи

Самку дрозофилы, гетерозиготную по рецессивным генам темной окраски тела и миниатюрных крыльев, скрестили с самцом, имевшим темное тело и миниатюрные крылья. От этого скрещивания было получено:

– 244 мухи с темным телом и миниатюрными крыльями;
– 20 мух с серой окраской тела и миниатюрными крыльями;
– 15 мух с темной окраской тела и нормальными крыльями;
– 216 мух с серой окраской тела и нормальными крыльями.

Исходя из приведенных данных определите, являются две эти пары генов сцепленными или нет. Как гены сцеплены?

А – серое тело
а – темное тело
В – нормальные крылья
b – миниатюрные крылья

Характер наследования генов А и В – ?

Результаты расщепления среди гибридов (два фенотипических класса являются господствующими и повторяют фенотипически и генотипически родительские формы, а два других класса фенотипов представлены небольшим количеством особей) свидетельствуют о неполном сцепление генов А и В.

Ответ : гены А и В наследуются сцеплено; сцепление носит неполный характер.

VI Домашнее задание

§41, стр.161-164. Ответить на вопросы стр.165.

Задача №1. Дигетерозиготное растение гороха с гладкими семенами и усиками скрестили с растением с морщинистыми семенами без усиков. Известно, что оба доминантных гена (гладкие семена и наличие усиков) локализованы в одной хромосоме, кроссинговера не происходит. Составьте схему решения задачи. Определите генотипы родителей, фенотипы и генотипы потомства, соотношение особей с разными генотипами и фенотипами. Какой закон при этом проявляется?

А — гладкие семена, а — морщинистые семена
B — наличие усиков, b — без усиков

Рубрики: Без рубрики